skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Taicheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pretraining of NERF models on chemically related mechanisms significantly improves the performance compared to pretraining by larger, mechanistically dissimilar reaction datasets. 
    more » « less
    Free, publicly-accessible full text available May 14, 2026
  2. Inverse molecular generation is an essential task for drug discovery, and generative models offer a very promising avenue, especially when diffusion models are used. Despite their great success, existing methods are inherently limited by the lack of a semantic latent space that can not be navigated and perform targeted exploration to generate molecules with desired properties. Here, we present a property-guided diffusion model for generating desired molecules, which incorporates a sophisticated diffusion process capturing intricate interactions of nodes and edges within molecular graphs and leverages a time-dependent molecular property classifier to integrate desired properties into the diffusion sampling process. Furthermore, we extend our model to a multi-property-guided paradigm. Experimental results underscore the competitiveness of our approach in molecular generation, highlighting its superiority in generating desired molecules without the need for additional optimization steps. 
    more » « less